A fizika legérdekesebb fogalma: a tömeg

 

Ráállunk az utcai mérlegre. A mérleg kezelője azt mondja például: "Az ön súlya 63 kilogramm." Egészen furcsán hangzanék, ha azt mondaná: "Az ön tömege 63 kilogramm." De ez is helyes kifejezés lenne.
Az előbbi részben a Holdról azt mondtuk, hogy a tömege 80-szor kisebb, mint a Föld tömege. Teljesen helytelen lenne, ha ehelyett azt mondanánk, hogy a Hold súlya 80-szor kisebb, mint a Föld súlya.
Az eddigi példáinkban szereplő testekről egyszer azt mondtuk, hogy súlyuk például ezer kilogramm, máskor azt mondtuk, hogy tömegük ezer kilogramm. Néha ugyanabban a példában felváltva használtuk a súly és a tömeg kifejezést.
Mi különbség van egy test súlya és tömege között?
Mikor használunk "tömeg" szót, és mikor helyes a "súly" kifejezés?
Mit jelent az, ha azt mondjuk, hogy egy rakéta "tömege" 1.000 kilogramm? Helyesebb-e, ha ezt a rakétát 1.000 kilogramm tömegünek nevezzük, vagy az a jobb, ha 1.000 kilogramm súlyúnak mondjuk?

 

Űrhajóra szállunk egy liter vízzel

Mindenki tudja, hogy 1 liter 4 °C hőmérsékletű tiszta víz súlya 1 kilogramm.
Mi okozza ezt a súlyt?
A testek súlyát az okozza, hogy a test (az egy liter víz) meg a Föld vonzzák egymást.
Hogyan lehetnek megmérni ennek a vonzóerőnek a nagyságát?
Nagyon egyszerűen. Az egy liter vizet rugóra függesztjük. A rugó megnyúlik. A testek súlyát rugós erőmérővel mérhetjük, és rugós erőmérővel állapíthatjuk meg, hogy az egyik test súlya hányszor akkora, mint egy másik test súlya.
De mi történne akkor, azt az egy liter vizet más égitestre vinnénk?
A vonzóerő nagysága, a test súlya más lenne. Két példát már említettünk. A Hold anyagának mennyisége sokkal kevesebb, mint a Földé. A Hold felületén a vonzóerő csak hatodrésze a Föld felületén tapasztalt vonzóerőnek. A Nap felületén pedig 28-szor akkora a vonzóerő, mint a Földön.
Ezért az 1 liter víz súlya a Holdon csak 1/6 kilogramm, a Nap felületén pedig 28 kilogramm.

A testek súlya a vonzóerő nagyságától függ. A súly a testek nem állandó, nem változatlan tulajdonsága.

Tegyük fel, hogy a Világegyetemben van egy olyan hely, ahol semmiféle erő nem hat az ott lévő testre. Van-e itt a testnek, az egy liter víznek súlya? Nincs! Egy gondolatbeli rugósmérleg semennyit sem nyúlna meg, ha ráakasztanánk az egy liter vizet.
Most már világos, hogy mit jelent a testek "súlya"!
A testek súlyát a tömegvonzás, a gravitáció okozza. Ugyanannak a testnek (pl. egy liter víznek) a súlya más-más nagyságú lehet a Világegyetem különböző helyein. Az 1liter víz súlya a Föld felületén 1 kilogramm, de elképzelhetünk olyan helyet, ahol ugyanennek az 1 liter víznek a súlya 1.000 vagy 10.000 kilogramm is lehet. Sőt olyan hely is elképzelhető, ahol egyáltalán nincs súlya.
A súly a testnek, annak az egy liter víznek egyik tulajdonsága. De ez a tulajdonság nem állandó, hanem helyenként változik. Már említettük, hogy nem kell elmenni a Hold felületére, mert ha csak egy lépcsőfokkal feljebb lépünk, máris kisebb lesz a súlyunk, pedig testünk anyagának mennyisége nem változott meg.
A lényeg tehát ez: a testek súlya nem állandó, hanem helyenként változó.

Felmerül a nagy és érdekes kérdés: van-e a testnek valami olyan tulajdonsága, amely a Világegyetem bármely helyén állandó marad? Van-e ennek az egy liter víznek olyan tulajdonsága, amely ugyanaz marad akár a Holdra, akár a Napra, akár a Nap közepében uralkodó 20 millió fokos hőségbe visszük? Ennek a tulajdonságnak a testre nézve jellemzőnek és jól mérhetőnek kell lennie.
Ez a kérdés valóban érdekes!

 

Megértjük, hogy mi a "tömeg"

Az előbb, amikor a súlyról beszéltünk, az egy liter vizet rugóra függesztettük és a rugó megnyúlását figyeltük. Ha a rugó jobban megnyúlott azt mutatta, hogy nagyobb lett az egy liter víz súlya.
Most az egy liter vizet tegyük gondolatban egy súlytalan és súrlódás nélkűl szabadon mozgó kis kocsira. A kocsit majd rugós erőmérővel kell húzzuk. Az egy liter vízre, most semmilyen más erő nem hat, csak a húzóerő.
Mi történik, ha az 1 liter vízre, 1 másodpercig 1 kilogramm húzóerőt fejtünk ki?
Ez a jólismert és sokszor alkalmazott alapesetünk: ha 1 liter (1 kg) vízre, 1 másodpercig 1 kilogrammsúlynyi erő hat, akkor az 1 liter víz 10 méter másodpercenkénti végsebességet ér el.

Ha a világmindenség bármely pontján hat 1 liter vízre 1 másodpercig 1 kilogrammsúlynyi erő - annak a víznek a végsebessége mindenütt 10 méter lesz másodpercenként. Tehát az 1 liter víz (vagy bármely test) mindenütt ugyanakkora ellenállást fejt ki a mozgatóerővel szemben (ábra). A testek tömege mindenütt változatlan marad - állandó.

Gyorsítási kísérlettel a Világegyetem bármely részén megtudhatnánk valamely test tömegét, 1 liter víz (1 kg) tömegében kifejezve (ábra).

Mi lesz a végsebesség akkor, ha a kocsira 2, 3 liter vizet teszünk és most is 1 kg súlyerővel húzzuk 1 másodpercig?
Akkor a másodperc végén a végsebesség kétszer, háromszor kisebb lesz. - Mindezt eddig is tudtuk. Sőt talán még a következő kérdésre is tudnánk felelni:
A kis kocsin ismeretlen mennyiségű víz van. Nem sejtjük, hogy hány liter. De amikor 1 kg erővel 1 másodpercig megtoljuk a kocsit, 2 méter lesz a végsebessége másodpercenként. Hány liter víz van a kocsin?
Mivel a végsebessége nem 10 méter/másodperc, hanem 5-ször kevesebb, azaz 2 méter/másodperc, ezért a mozgásba hozott víz 5-ször több mint 1 liter azaz 5 liter víz van a kocsin.

 

Most következik a meglepetés

Bárhol végezzük is el ezeket a gyorsítási kísérleteket, még a legmagasabb hegy tetején is ugyanarra az eredményre jutunk, mint a tengerszinten. Ezért bizonyos, hogy a Hold vagy a Nap felszínén is ugyanez lenne a kísérlet eredménye.
Vagyis: a Világegyetem bármely helyén hat arra az 1 liter vízre 1kgsúly erő 1 másodpercig, mindenütt 10 méter másodpercenkénti végsebességet ér el.
Eszerint a testeknek, az anyagnak van olyan tulajdonsága, amely a világmindenség minden helyén változatlan marad, állandó:

Ezért tapasztalatunkat úgy fejezhetjük ki, hogy: jóllehet ugyanannak a testnek a súlya a Világegyetem különböző helyein változik, de a testnek a mozgatóerővel szemben tanusított ellenállása, a test tehetetlensége mindenütt állandó.
Példánkban láttuk, hogy a testek tehetetlenségének nagyságát lemérhetjük. Ha ugyanakkora erőt alkalmazunk, és az elért végsebesség egy másik esetben kétszer, háromszor kisebb, akkor annak a másik esetben mozgatott testnek a tehetelensége kétszer, háromszor nagyobb, mint az első esetben mozgatott test tehetelensége.
Ha egy testnek a mozgatóerővel szemben tanúsított ellenállása, tehetetlensége mondjuk százszor akkora, mint egy liter vízé, akkor azt mondjuk, hogy annak a testnek a tömege százszor nagyobb, mint egy liter víz tömege.

Aki az eddigieket jól megértette, meg tudja oldani a következő feladatot.
Feladat: két vasdarab fekszik előttünk az asztalon, egy kisebb és egy nagyobb. Hogyan tudnánk megmérni azt, hogy a nagyobbik tömege hányszorosa a kisebbik tömegének?
Megoldás: ugyanakkora erővel, ugyanannyi ideig gyorsítanánk először az egyiket, azután a másikat. Ha azt tapasztalnánk, hogy a nagyobbik vasdarab végsebessége tízszer kisebb, mint a másik vasdarabé, akkor a nagyobbik vasdarab tömege tízszerese a kisebbik vasdarab tömegének.
Íme anélkül, hogy a testek súlyát ismernénk, meg tudjuk mérni, hogy az egyik hányszor akkora tömegű mint a másik.

 

Egy megdöbbentő tapasztalat

Az előbb két vasdarabról volt szó. Mozgatási kísérlettel megállapítottuk, hogy az egyiknek az erővel szemben gyakorolt ellenállása, tehetetlensége, tehetelen tömege tízszer akkora, mint a másiké.
Most következik a meglepő tapasztalat.
Függesszük fel rugós erőmérőre külön-külön mindegyik vasdarabot. Egyszóval mérjük meg a súlyukat. Azt tapasztaljuk, hogy a tízszer nagyobb tömegű vasdarab súlya is tízszer nagyobb.
Mi ebben a meglepő?

Ha valamely test tehetetlen tömegét például 3-szor akkorának találjuk, mint a másik testét, akkor annak a testnek a súlyos tömege (ami a rugó megnyúlását okozza) is 3-szor akkora, mint a másiké (ábra).
Amikor a vasdarabok tehetetlenségét, tömegét mozgatási kísérlettel megállapítottuk, ebben semmi szerepe sem volt a testek egymásra gyakorolt hatásának, a gravitációnak.
Amikor pedig rugóra felfüggesztettük a vasdarabokat, nem mozgattuk, csupán a Föld vonzásának tettük ki őket. Azt tapasztaltuk, hogy amelyik vasdarab tízszer jobban ellenáll a gyorsítóerőnek, az a vasdarabot tízszer jobban vonzza a Föld is !
Ezt úgy mondjuk, hogy:

ha egy testnek a tehetetlen tömege tízszer akkora, min egy másik testé, akkor annak a testnek a súlya is tízszer akkora (annak a testnek súlyos tömege, gravitációs tömege is tízszer nagyobb). Valamely test tehetetlen tömege ugyanakkora, mint a gravitációs tömege.

Teljesen mindegy tehát, hogy két testnek a mozgatóerővel szemben tanusított ellenállását, vagyis a tehetetlenségét mérem-e meg, vagy a két testnek a súlyát. Mindkét mérés alapján megmondhatjuk, hogy az egyik test tömege hányszor akkora, mint a másik test tömege. A kétféle mérés végeredménye ugyanaz! Pedig a mozgatással szemben gyakorolt ellenállás egészen más tulajdonság, mint a tömegvonzás.
Mi lehet ennek a meglepő egyezésnek az oka?
Erre ma még nem tudunk magyarázatot adni. De könnyebb felelni arra a kérdésre, hogy valóban pontosan ugyanakkorának adódik-e a kétféle módon mért tömeg, vagy a két érték csak pontatlanul egyezik.
Különféle eljárásokat dolgoztak ki, hogy nagyon pontosan meg tudják mérni egy test tehetetlen tömegét és gravitációs tömegét. Ilyen mérést Eötvös Lóránd is végzett. Megállapította, hogy a kétféle módon mért tömeg számértéke kétszázmilliomod-résznyi pontossággal egyezik. A mai, kb. százszor pontosabb mérések is igazolták a kétféle tömeg azonosságát.

 

Mi különbség van egy test tömege és súlya között?

Most már felelni tudunk erre:

Mi helyesebb, az, ha a Föld vagy a Hold súlyáról beszélünk, vagy a tömegükről?

A Föld vagy a Hold súlyáról beszélni oktalanság. A Földnek legfeljebb a Napra és a többi égitestre nézve lenne megadható súlya. De még a Napra vonatkoztatott súlya is folyton változnék, mert hiszen ha közelebb kerül a Naphoz, akkor nagyobb a tömegvonzás ereje, mintha távolabb van. Viszont a Föld, a Hold tömege állandó. Az égitesteknek csak a tömegéről beszélni értelmes dolog.
Ha a Föld felületén levő tárgyakról, például egy emberről vagy egy mozdonyról van szó, akkor mindegy, akár azt mondjuk, hogy az ember súlya 68, a mozdonyé 100.000 kg, vagy azt mondjuk, hogy a tömegük 68, illetve 100.000 kg.
De ha a Hold (vagy más égitest) felületén lévő szikladarab nagyságát akarjuk felismerni, akkor azt kell mondani, hogy a tömege például 100.000 kg. Ha a szikladarabot a Földre hoznánk, akkor a súlya is 100.000 kg lenne. De a Hold felületén sokkal (hatszor) kisebb a 100.000 kg tömegű szikladarab súlya.


Felhasznált irodalom